
KindSpec 2.2 Quick Start Guide

DSIC-VrAIn, Universitat Politècnica de València, Spain

June, 2020

Contents

1 What is KindSpec 2.2? 1

2 Starting KindSpec 2.2 1

3 KindSpec 2.2 interface 3
3.1 The top menu bar . 3
3.2 The Console panel . 4
3.3 The Program File panel . 6
3.4 The Inference Parameters panel . 6

4 A typical contract inference session 7
4.1 The example program . 8
4.2 Setting the interface . 9
4.3 Reading the contract . 10
4.4 Axiom refinement . 11

A Appendix: KernelC Syntax for KindSpec 2.2 16

1 What is KindSpec 2.2?

KindSpec 2.2 is an automated tool for inferring software contracts from programs that are writ-
ten in a non-trivial fragment of C, called KernelC, that supports pointer-based structures and
heap manipulation. By relying on the standard distinction between modifier and observer program
functions, KindSpec 2.2 generates a method contract for any routine by using other (observer)
functions in the same program. The synthesized contract essentially consists of logical axioms that
express pre- and post-condition assertions that define the precise input/output behavior of the C
routine. The inferred axioms include default (general) rules and exceptions to these rules that
specify exceptional or error behavior (e.g., undesirable use cases or execution side effects).

Roughly speaking, KindSpec 2.2 relies on a semantic definition of KernelC in the K frame-
work that is used for symbolically executing the program functions and synthesizes program prop-
erties by interpreting the results. In order to avoid non-termination of loops and recursion, the
semantic definition is enriched with a widening operator that is based on abstract interpretation.
However, because of abstraction, some inferred axioms cannot be guaranteed to be correct; hence,
they are kept apart as candidate (or overly general) axioms. KindSpec 2.2 can then perform a
post-processing refinement that allows the user to trust some axioms (marking them as correct)

1

and to falsify those candidate axioms (thereby removing the falsified axioms from the axiom set).
KindSpec 2.2 also filters out any redundant axiom from the contract.

This guide explains how to use the features of the KindSpec 2.2 tool, which are:

• Automatic inference of axiomatic contracts for KernelC programs from source code

• Post-processing refinement, which consists of three phases: trusting, falsification, and removal
of redundant axioms

2 Starting KindSpec 2.2

KindSpec 2.2 is available as a desktop applicaction with a graphical interface. To access the
KindSpec 2.2 tool, enter the website http://safe-tools.dsic.upv.es/kindspec2_2/ and click
on the tab “Download”. Then, click on the link in “Download a desktop version of KindSpec 2.2”,
as indicated in Figure 1.

Figure 1: KindSpec 2.2 download swebpage.

The distribution package of KindSpec 2.2 is fully standalone, which means that all required
dependencies are comprised except for the following two ones: 1) the Java Runtime Environment
(JRE)1, which is required to run KindSpec 2.2; and 2) the GNU Compiler GCC2, which is used
for axiom falsification and must be installed in your system (with the gcc command being usable
from the command line.)

To execute KindSpec 2.2, unzip the compressed distribution file, place the resulting folder
anywhere in your system, and then run the executable file KindSpec.jar.

1The latest JRE version is available at https://www.oracle.com/technetwork/java/javase/downloads/
jre8-downloads-2133155.html. Please note that KindSpec 2.2 is not compatible with some versions of Java,
specifically with Java 10.

2Available at https://gcc.gnu.org/install/

2

http://safe-tools.dsic.upv.es/kindspec2_2/
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://gcc.gnu.org/install/

The first time you run the program you need run a last step to finish the installation. That last
step allows the dependencies included in the package to be automatically installed (see Figure 2).
Please, follow carefully the installation instructions on that page. You need to provide the path to
JDK7 on your system and then confirm that you want to install the dependencies (see Figure 2). The
installation process may take several minutes since it compiles the KernelC language semantics
that is encapsulated in a K framework script. When the setup is completed, another dialog confirms
that the installation was successful. The main interface of KindSpec 2.2 will finally launch after
clicking on “OK” or closing the dialog.

Figure 2: Setup dialog.

3 KindSpec 2.2 interface

When KindSpec 2.2 is opened, the main window of the application interface appears. As illustrated
in Figure 3, the interface is composed of five, easily identifiable parts: 1) the top menu bar, with
classical File and Help buttons; 2) the Console panel, in the left-hand side section of the window,
which organizes all the information that is generated during the contract inference process; 3) the
Program File panel, in the top part of the right-hand side section; and 4) the Inference Parameters
panel, below the Program file panel on the right-hand side section. In the following, we explain in
detail all of the features.

3.1 The top menu bar

The menu bar at the top of the interface window provides the File and Help (sub-)menus. The
File menu allows the user to manage the inferred contracts and to export any information that is
generated during the inference session. The File options are illustrated in Figure 4. We enumerate
them as follows:

• Reset session: Cleans up and resets the application to the initial (default) state.

• Export contract: Stores the current contract into a serialized file.

• Load contract: Restores a previously saved contract without running the inference process
again.

• Save console: Stores the contents of the Console area in plain text files. The specific tab to
be saved in a file can be selected through a dialog with radio buttons, as shown in Figure 5.
Only one tab can be saved at a time (but the menu option can be accessed again).

• Close: Closes up the KindSpec 2.2 interface.

The Help submenu contains a Contact option; clicking on it will show a dialog with contact
addresses to report any issue found during the execution of KindSpec 2.2.

3

Figure 3: Main window of the KindSpec 2.2 interface.

Figure 4: File submenu in the top menu bar.

Figure 5: Save console dialog.

4

3.2 The Console panel

This area provides access to the different outcomes of the contract inference process. The different
contents can be accessed through several tabs. All of the tabs (except for the Home tab) are
initially deactivated and become enabled only when some output is made accessible through them.
The purpose of each tab is explained below:

Figure 6: Console panel with progress bar and control text area.

1. The Home tab briefly provides some instructions for using the interface in a standard session.
It is always enabled and it never gets modified.

2. The Program tab shows the source code of the input program that is currently loaded. Note
that the program source code is not modifiable from this area.

3. The Contract tab outputs the resulting contract at the end of the whole inference process.

5

4. The Execution tab shows all of the intermediate results; for instance, the final states of the
symbolic execution tree or the raw, initially extracted axioms and candidate axioms (before
any refinement). The contents of this tab are updated several times during the inference
process.

5. The Refinement tab lists the inferred candidate axioms in a table. The user can select any
candidate axiom from the table either for Trusting it or for attempting its Falsification through
dedicated buttons. The whole refinement process is described in Section 4.

6. The Statistics tab summarizes some practical information of the inference session; for example,
the number of symbolic execution paths deployed, the number of different axioms distilled from
these paths, and the elapsed inference time.

7. The Errors tab is never activated in a successful inference session. It is only enabled whenever
an exception or error arises during KindSpec 2.2’s execution, reporting them in a log that
can be accessed through this tab. When this tab is activated, the execution of KindSpec 2.2
generally stops.

Finally, the lower part of this panel also contains a progress bar and a text area that are both
shown in Figure 6. The progress bar is active when the inference process (or the refinement process)
starts and provides an estimation of the percentage of work left to complete the task. The text area
outputs control information about the current task.

3.3 The Program File panel

This area allows a KernelC program3 to be loaded, which can be done in two ways, as illustrated
in Figure 7. First, a dropdown menu is available at the top of this panel, which allows the user to
choose among a set of predefined benchmark programs and load the selected program by clicking
the Load button at the right-hand side of the dropdown menu. Second, the Browse button can be
used to search for (and select) a C program file on the user’s computer. Once selected, the path
to the file will appear next to the Upload your own label shown in Figure 7. The program can then
be loaded by pressing the adjacent Load button. In the case that a valid program is provided, the
Program tab in the Console area becomes active as well as the Function selector in the Inference
Parameters panel, which is described in the next section.

Figure 7: Program File panel.

3.4 The Inference Parameters panel

This panel can be used to set the key inference parameters. First, the Function dropdown menu in
Figure 8 allows the function for which a contract must be inferred to be selected from the functions
found in the input program. Note that a program must have been loaded first in order for this
selector to be enabled. Also, two checkboxes are provided for setting two specific parameters:

3The KernelC syntax accepted by KindSpec 2.2 is summarized in Appendix A.

6

Figure 8: Interface configuration for the insert(s,x) example.

Apply aliasing on Lazy Initialization As mentioned above, KindSpec 2.2 relies on symbolic
execution, which consists of running functions with symbolic values as input values instead of using
specific data values as in standard execution. These symbols represent unbounded values of their
respective types. Symbolic values are then constrained as a result of exploring the symbolic execution
paths. Specifically, the accumulated constraint along a given path represents the properties that
concrete input data needs to satisfy in order to exercise the considered path. In order to support
potentially dynamic data objects (struct types in C), standard symbolic execution is enriched with
the lazy initialitation technique. Roughly speaking, when an instruction performs a first access to
a symbolic object reference field, the symbolic execution forks the current state into three different
heap configurations, in which the field is respectively initialized to: 1) null; 2) a reference to a new
object with all symbolic attributes; and 3) a previously introduced concrete object of the desired
type. With these initialized cases, conditions on these objects can be added to the accumulated
constraint4.

Lazy initialization avoids requiring any a priori bound size for symbolic input structures. How-
ever, note that in case 3, lazy initialization generates a new path for every object of the same type
that already exists in the heap. This linking is called aliasing and can cause state blow-up after
some iterations. Fortunately, aliasing is not necessary if the program does not deal with cyclic
structures (such as circular lists). For this reason, aliasing is disabled by default and can be enabled
on demand by selecting the Apply aliasing on Lazy Initialization option. For efficiency reasons, we
recommend keeping this option unselected unless the input program operates with cyclic structures.

4Further information about lazy initialization can be found in:
S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized Symbolic Execution for Model Checking and Testing. In:
Proc. TACAS ’03. ACM, pp. 553-568, 2003.

7

Apply Abstract Subsumption Symbolic execution of code that contains loops or recursion may
result in an infinite number of paths whenever the termination condition depends on symbolic data.
A classical solution is to establish a bound to the depth of the symbolic execution tree by specifying
the maximum number of unfoldings for each loop and recursive function. However, KindSpec
2.2 implements a more accurate technique that is based on abstract subsumption5 and determines
the length of the symbolic execution paths in a dynamic way by using abstraction on the memory
structures. The use of such abstract subsumption to terminate the symbolic execution of the
program can be enabled/disabled through the Apply Abstract Subsumption checkbox. KindSpec
2.2 also provides predefined abstractions for several data structures that can be selected in the
Abstraction combo box. The classical Summary node for lists is selected by default.

4 A typical contract inference session

Let us illustrate a classical inference session with KindSpec 2.2.

4.1 The example program

The example program that is used in this walkthrough is shown in Figure 9 and consists of the
KernelC implementation of an abstract data type for representing sets by using linked lists.

Roughly speaking, we define set operations over a data structure (struct set) that records the
number of elements contained in the set (field lsize), the maximum number of elements that can be
held (field capacity), and a pointer to a list that stores the set elements (field elems). Each node
of the list is a record data structure (struct lnode) that contains an integer value (field value)
and a pointer to the subsequent list element (field next).

The program is composed of six methods: a modifier function (insert), and five observer
functions (isnull, isempty, isfull, contains, and length). A call insert(s,x) to the insert
function proceeds as follows. It first checks that the pointer s to the set structure is different from
NULL, that the set is not full, and that x is not in the set yet. Then, a new list node *new_node is
allocated, filled with the value x, and inserted as the first element of the list; also, the size of the
set is increased by 1 and the call returns 1. Otherwise, 0 is returned and s is not modified. The
following observers return 0 (which in C stands for the boolean value false) unless explicitly stated
otherwise. The observer function isnull(s) returns 1 (which stands for the boolean value true)
only if the pointer s references to NULL memory; isempty(s) returns 1 if s points to an empty list
(i.e., s->elems is NULL); isfull(s) returns 1 if s is not null and not empty and if the size of s
is greater than or equal to its capacity; and contains(s,x) returns 1 if the value x is found in s.
Finally, the function length(s) counts up the number of elements in the set.

The user can ask KindSpec 2.2 to infer a contract for the insert(s,x) function by using the
isnull, isempty, isfull, contains, and length functions to interpret the symbolic states before
and after the function execution.

4.2 Setting the interface

After the KindSpec 2.2 Java application has been launched as indicated in Section 2, we can
proceed to load the example program in KindSpec 2.2, configure the interface, and start the
inference process for the insert(s,x) function as follows.

5For more information on abstract subsumption, we direct the reader to:
S. Anand, C. S. Păsăreanu, and W. Visser. Symbolic execution with abstraction. STTT, 11(1):53–67, 2009.

8

1 #include <stdlib.h>
2
3 struct lnode {
4 int value;
5 struct lnode *next;
6 };
7
8 struct set {
9 int capacity;

10 int lsize;
11 struct lnode *elems;
12 };
13
14 int insert(struct set *s, int x) {
15 struct lnode *new_node;
16 struct lnode *n;
17 int found;
18
19 if(s==NULL)
20 return 0; /* NULL set */
21
22 if(s->lsize >= s->capacity)
23 return 0; /* no space left */
24
25 if(s->elems == NULL) { /* empty set */
26 new_node = (struct lnode*) malloc(sizeof(struct

lnode));
27 if(new_node == NULL)
28 return 0; /* no memory left */
29 new_node->value = x;
30 new_node->next = NULL;
31
32 s->elems = new_node;
33 s->lsize = 1;
34
35 return 1;
36 }
37
38 n = s->elems;
39 found = 0;
40 while(n != NULL) {
41 if(n->value == x) {
42 found = 1;
43 }
44 n = n->next;
45 }
46
47 if(found) {
48 return 0; /* element already in the set */
49 }
50
51 /* Creation of new node */
52 new_node = (struct lnode*) malloc(sizeof(struct

lnode));
53 if(new_node == NULL)
54 return 0; /* no memory left */
55 new_node->value = x;
56 new_node->next = NULL;
57
58 n = s->elems;
59 new_node->next = n;

60 s->elems = new_node;
61 s->lsize = s->lsize + 1;
62
63 return 1; /* element added */
64 }
65
66 int isNull(struct set *s) {
67 if(s==NULL)
68 return 1;
69 return 0;
70 }
71
72 int isEmpty(struct set *s) {
73 if(s==NULL)
74 return 0;
75 if(s->elems==NULL)
76 return 1; /* s is empty */
77 return 0;
78 }
79
80 int isFull(struct set *s) {
81 if(s==NULL)
82 return 0;
83 if(s->lsize >= s->capacity)
84 return 1; /* s is full */
85 return 0;
86 }
87
88 int contains(struct set *s, int x) {
89 struct lnode *n;
90
91 if(s==NULL)
92 return 0; /* s is NULL */
93
94 n = s->elems;
95 while(n != NULL){
96 if(n->value == x)
97 return 1; /* element found */
98 n = n->next;
99 }

100
101 return 0; /* element NOT found */
102 }
103
104 int length(struct set *s) {
105 struct lnode *n;
106 int count;
107
108 if(s==NULL)
109 return 0; /* s is NULL */
110
111 count = 0;
112 n = s->elems;
113 while(n != NULL){
114 count = count + 1;
115 n = n->next;
116 }
117
118 return count;
119 }

Figure 9: KernelC implementation of a set data type through linked lists.

The example program is available as a built-in benchmark program, thus it can be easily selected
by opening the drop-down combo box in the Program File panel and clicking on insert-counting.c.
Then, load it into KindSpec 2.2 by pressing the Load button at the right-hand side of the drop-
down menu. The focus in the Console panel will immediately change to the Program tab, where the
code of the program is displayed.

9

Now let us configure the inference parameters in the Inference Parameters panel as shown in
Figure 8. Open the Function selector and scroll down to the profile of the insert(s,x) function,
which is int insert(struct set*, int). Since the program deals with acyclic (singly-linked) lists, we
leave the Apply aliasing on Lazy Initialization option deactivated. We also keep the Apply Abstract
Subsumption option with the default Summary node abstraction selected in the Abstraction selector.

In order to run the inference process, click on the INFER! button in the lower right area of the
window. The Contract, Execution, and Statistics tabs in the Console area become accesible. Also,
the progress bar and the control text area below the bar are now active. All of the remaining
elements of the interface will be disabled while the inference process is being carried out. Since the
example program contains many observer functions, symbolic execution is costly and the application
generally takes a bit of time. In this case, the control text area will show the message “... this may
take a while”. Meanwhile, the enabled tabs in the Console area can be freely navigated.

Once the inference process is finished, the focus in the Console panel will automatically change
to the Contract tab that gets populated with the resulting contract, as illustrated in Figure 10. Since

Figure 10: Contract tab in the Console panel.

three candidate axioms have been synthesized, the Refinement tab is enabled. Also, KindSpec 2.2
fills in the Statistics table, as shown in Figure 11.

4.3 Reading the contract

The contract obtained after running the inference process on the insert(s,x) function is shown in
Figure 12 and consists of four main elements:

1. the function precondition P , which is given by the disjunction of all of the antecedents of the

10

Figure 11: Statistics table and interface at the end of the inference process.

inferred axioms (p ⇒ q);

2. the function postcondition Q , which is given by the set of inferred axioms;

3. the set L of references to memory locations (function parameters and data-structure pointers
and fields) whose value might be affected by the function execution;

4. the set of candidate axioms Q#, which will be explained in the following subsection.

For instance, axiom A2 in the function postcondition can be read as follows: if the set s is not
null, not full, and not empty, and the value in the only node in the list is not x, then, after execution,
the set remains non-null and non-empty, the value x is now in the set, the length is increased by 1,
and the call to insert(s,x) returns 1, which denotes a successful insertion.

Now we can optionally save the generated contract by clicking on the top File submenu, and
then choosing the Export contract option of the menu, which saves the serialized file that represents
the contract (with .kss extension) in the selected directory of the file system. We can also save the
contract in textual format (with .txt extension) to be able to access it at any time. This is done
by choosing the Save console option of the File submenu, then choosing the Contract console (in the
console selection dialog), and finally clicking OK.

4.4 Axiom refinement

Due to the application of abstract subsumption, the inferred contract has three axioms that are
uncertain and potentially spurious. These overly general axioms are called candidate axioms and
can be polished through the Refinement tab.

Let us initiate a new KindSpec 2.2 session (or continue it if you didn’t finish it) to illustrate
the refinement process by analyzing the obtained candidate axioms.

11

Inference performed April 08 2020
Selected modifier function: insert
From file: .../build/examples/insert_length_counting.c

RESULTING INFERRED CONTRACT

PRECONDITION P:
(isEmpty(s)=1 ^ length(s)=0 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=0) ||
(isEmpty(s)=0 ^ length(s)=1 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=0) ||
(isEmpty(s)=0 ^ length(s)=2 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=0) ||
(isEmpty(s)=0 ^ length(s)=2 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0) ||
(isEmpty(s)=0 ^ length(s)=1 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0) ||
(isFull(s)=1 ^ isNull(s)=0) ||
(isEmpty(s)=0 ^ length(s)=0 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=1)

POSTCONDITION Q:
A1: (isEmpty(s)=1 ^ length(s)=0 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=0) =>

(isEmpty(s)=0 ^ length(s)=1 ^ contains(s,x)=1 ^ isNull(s)=0 ^ ret=1) ^
A2: (isEmpty(s)=0 ^ length(s)=1 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=0) =>

(isEmpty(s)=0 ^ length(s)=2 ^ contains(s,x)=1 ^ isNull(s)=0 ^ ret=1) ^
A3: (isEmpty(s)=0 ^ length(s)=2 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=0) =>

(isEmpty(s)=0 ^ length(s)=3 ^ contains(s,x)=1 ^ isNull(s)=0 ^ ret=1) ^
A4: (isEmpty(s)=0 ^ length(s)=2 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0) =>

(isEmpty(s)=0 ^ length(s)=2 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0 ^ ret=0) ^
A5: (isEmpty(s)=0 ^ length(s)=1 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0) =>

(isEmpty(s)=0 ^ length(s)=1 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0 ^ ret=0) ^
A6: (isFull(s)=1 ^ isNull(s)=0) => (isFull(s)=1 ^ isNull(s)=0 ^ ret=0) ^
A7: (isEmpty(s)=0 ^ length(s)=0 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=1) =>

(isEmpty(s)=0 ^ length(s)=0 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=1 ^ ret=0)

LOCATIONS L:
new_node
new_node->value
new_node->next
s->elems
s->lsize
n
found

CANDIDATE AXIOMS Q#:
C1: (isEmpty(s)=0 ^ length(s)=?l0 + 1 ^ contains(s,x)=0 ^ isFull(s)=0 ^ isNull(s)=0 ^ ?l0 >= 2) =>

(isEmpty(s)=0 ^ length(s)=?l0 + 2 ^ contains(s,x)=1 ^ isNull(s)=0 ^ ?l0 >= 2 ^ ret=1) ^
C2: (isEmpty(s)=0 ^ length(s)=?l0 + 1 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0 ^ ?l0 >= 2) =>

(isEmpty(s)=0 ^ length(s)=?l0 + 1 ^ contains(s,x)=1 ^ isFull(s)=0 ^ isNull(s)=0 ^ ?l0 >= 2 ^ ret=0) ^
C3: (isEmpty(s)=0 ^ length(s)=?l0 + 1 ^ contains(s,x)=?c ^ isFull(s)=0^ isNull(s)=0 ^ ?l0 >= 2) =>

(isEmpty(s)=0 ^ length(s)=?l0 + 1 ^ contains(s,x)=?c ^ isFull(s)=0 ^ isNull(s)=0 ^ ?l0 >= 2 ^ ret=0)

Figure 12: Inferred contract for the insert(s,x) example.

If you have exported the contract and closed the previous session, open the KindSpec 2.2
application as explained in Section 2. Then, click on the File submenu and the select the Load
contract option. Look for the serialized .kss file saved in the previous section and select it. Once
done, the Contract, Execution, and Refinement tabs will be enabled and all of the corresponding
contract information will also be loaded into them. Navigate to the Refinement tab, shown in

12

Figure 13, and take a look6 at the candidate axioms. For our running example, these candidate
axioms can be seen in Figure 12.

Figure 13: Refinement console.

The candidate axiom C1 can be read as follows: if the set s is not full, null, or empty, it does
not contain the element x, and its length is any number greater than or equal to 2 (+ 1) before the
execution of insert(s,x), then after the execution s remains non-null and non-empty, its length
has been increased by 1, and now it contains the element x. Additionally, the call insert(s,x)
returned the value 1, which stands for successful insertion. Note that this axiom represents correct
information according to our example program: it stands for the general case where the element
does not belong to the set.

To add this candidate axioms to the contract, just select it and click on the Trusting button
below the list of candidate axioms. The system asks the user for confirmation (Figure 14). Upon

Figure 14: Confirmation before incorporating the axiom to the contract.

confirmation, a generalization and simplification process starts that tries to generate a more general
axiom that subsumes some of the contract axioms, including the trusted one (Figure 15).

Then, the system might offer an hypothesis axiom that subsumes some of the axioms in the
contract. If KindSpec 2.2 were not able to automatically check that the set of solutions of the
hypothesis coincides with the solution set of the subsumed axioms, it informs the user that the
hypothesis could not be verified and its confirmation is pending; otherwise it informs the range was
verified (Figure 16).

6Note that the columns of the table can be freely redimensioned.

13

Figure 15: KindSpec informs about the steps executed.

Figure 16: KindSpec shows the hypothesis computed for generalizing some axioms of the contract.

The same reasoning applies to axiom C2. It correctly represents the case when the element x was
already in the set before the execution of insert, hence nothing is inserted in the list and insert
returns 0. A trusting process can be then undertaken that is similar to the one for C1.

The residual contract that results from the axiom refinement process is shown in Figure 17.
Axiom C3 can be easily identified to be false since the symbolic value ?c in the contains(s,x)=?c

equation incorrectly states that the returned value is irrelevant, and moreover, the insert function
returns 0 and does not modify the input list regardless of this value. As discussed above, this is
not the real behavior of the insert function; if the list does not contain the element x, the list is
modified and insert returns 1 as in axiom C1. We can then conclude that this axiom is incorrect,
and a counterexample can be provided so that it can be finally discarded.

This can be done by first selecting axiom C3 in the table and then clicking on the Falsify button to
start the falsification subprocess. A dialog prompts that asks the user whether he wants an automatic
falsification process to be run to try refute the axiom. In the case when the user selects “No” or the
automatic falsification fails, a window opens to manually provide a counterexample for the axiom,
which is entered by suitably instantiating the arguments of the insert(s,x) function. This window
is shown in Figure 18. In order to refute a candidate axiom, the provided counterexample instance
is required to satisfy the precondition while the final state that is reached (after the execution of
insert) violates the postcondition. For the specific axiom C3, it suffices to provide an instantiation
where the value of x is not initially contained in a set s that has initial length >= 3. Once the
argument instantiation is provided, both conditions will automatically be tested by KindSpec 2.2.

For example, the following counterexample can be provided, which achieves the candidate axiom
C3 to be falsified:

struct set * s = (struct set *) malloc(sizeof(struct set));
s->capacity = 7;
s->lsize = 3;
s->elems = (struct lnode *) malloc(sizeof(struct lnode));

14

Figure 17: Contract after trusting axioms.

s->elems->value = 3;
s->elems->next = (struct lnode *) malloc(sizeof(struct lnode));
s->elems->next->value = 4;
s->elems->next->next = (struct lnode *) malloc(sizeof(struct lnode));
s->elems->next->value = 5;
s->elems->next->next = NULL;
int x = 8;

Figure 18: Axiom falsification dialog.

15

Given this argument instantiation, KindSpec 2.2 generates C code that attempts to execute:
1) the observers in the initial state as to check that the return values coincide with those stated in
the candidate axiom precondition; 2) the insert modifier in order to obtain the final execution state;
and 3) the observers in the final state so that the system can check that the return values do not
coincide with those stated in the precondition. The generated code is automatically compiled and
run by using the GNU Compiler GCC. If all checks are as expected and the instantiation is proved
to be an effective counterexample, the axiom is ruled out and a success message is output to the
user. This message also provides paths to the generated C files that falsified the axiom.

After refinement, the resulting final contract can be retrieved from the Contract tab of the
Console panel and it can also be exported to a serialized file or saved in text format, as you did
previously with the preliminary contract.

16

A Appendix: KernelC Syntax
for KindSpec 2.2

In the following, we present the syntactic elements
that are supported by KindSpec 2.2’s language spec-
ification for KernelC. Roughly speaking, KernelC
is a subset of C that includes:

• Structured type definition and use;

• Function definition and calling;

• Variables and pointers of types int and void;

• Usual imperative program statements, such as
variable assignment, function return, condi-
tional and iterative instructions (by means of
if and while constructs), statement blocks,
etc.;

• Integer values, variable identifiers (through the
predefined K sorts Int and Id, respectively),
and the NULL constant;

• Access to structured object fields by means of
the . and -> operators;

• Type castings;

• Access to memory content and memory ad-
dresses with the unary * and & operators;

• Usual arithmetic, relational and logical expres-
sions for primitive (integer) values; and

• Built-in sizeof, malloc, and free functions
for memory allocation and deallocation.

In contrast, the current KernelC language im-
plemented in KindSpec 2.2 lacks the following fea-
tures:

• Type definitions (typedef);

• Non-integer primitive types (float, double,
char...);

• Pointer arithmetic (this is due to the abstract
memory model of KindSpec 2.2, which as-
sumes that each memory cell is independent
of the rest and there is no sequence between
one object and another);

• Array support; and

• External library importation.

The current BNF syntax of supported KernelC
language terms (terminals and non-terminals) is pre-
sented below. Note that the List{S , s} construct is a
predefined K terminal that represents a sequence of
elements of sort S split by the separation character s.

File ::= Globals

Globals ::= List{Global, “”}

Global ::= StructDeclaration
| FunctionDeclaration
| FunctionDefinition
| #include <stdio.h>
| #include <stdlib.h>

StructDeclaration ::=
struct Id{VariableDeclarations} ;

FunctionDeclaration ::=
Type Id(ParameterDeclarations) ;

FunctionDefinition ::=
Type Id(ParameterDeclarations) StatementBlock

VariableDeclarations ::=
List{VariableDeclaration, “”}

VariableDeclaration ::= Type Id ;

ParameterDeclarations ::=
List{ParameterDeclaration, “, ”}

ParameterDeclaration ::= Type Id

Type ::= int
| void
| struct Id
| Type *

StatementBlock ::= {Statements}

Statements ::= List{Statement, “”}

Statement ::= VariableDeclaration
| Type Id = Expression ;
| Expression = Expression ;
| return Expression ;
| return ;
| Expression ;
| ;
| Expression += Expression ;
| Expression -= Expression ;
| Expression *= Expression ;
| Expression /= Expression ;
| Expression ++ ;
| Expression -- ;
| if (Expression)Statement else Statement
| if (Expression)Statement
| while (Expression) Statement
| StatementBlock

17

Expression ::= Int
| Id
| NULL
| (Expression)
| Expression . Id
| Expression -> Id
| Id(Arguments)
| sizeof (Type)
| (Type)Expression
| - Expression
| * Expression
| & Expression
| Expression * Expression
| Expression / Expression
| Expression + Expression
| Expression - Expression

| Expression < Expression
| Expression <= Expression
| Expression > Expression
| Expression >= Expression
| Expression == Expression
| Expression != Expression
| ! Expression
| Expression && Expression
| Expression || Expression

Arguments ::= List{Expression, “, ”}

Id ::= main
| malloc
| free

18

	What is KindSpec 2.2?
	Starting KindSpec 2.2
	KindSpec 2.2 interface
	The top menu bar
	The Console panel
	The Program File panel
	The Inference Parameters panel

	A typical contract inference session
	The example program
	Setting the interface
	Reading the contract
	Axiom refinement

	Appendix: KernelC Syntax for KindSpec 2.2

